BIND Configuration Guide -- Master File Format

The Master File Format was initially defined in RFC 1035 and has subsequently been extended.

While the Master File Format is class independent all records in a Master File must be of the same class.

Master File Directives

$ORIGIN

Syntax: $ORIGIN <domain-name> [<comment>]

$ORIGIN set the domain name that will be appended to any unqualified records. When a zone is first read in there is an implict $ORIGIN <zone-name>. The current $ORIGIN is appended to the domain specified in the $ORIGIN argument if it is not absolute.

$ORIGIN EXAMPLE.

$ORIGIN MYZONE

WWW
CNAME
MAIN-SERVER

is equivlent to

WWW.MYZONE.EXAMPLE. CNAME MAIN-SERVER.MYZONE.EXAMPLE.

$INCLUDE

Syntax: $INCLUDE <filename> [<origin>] [<comment>]

Read and process the file filename as if it was included into the file at this point. If origin is specified the file is processed with $ORIGIN set to that value otherwise the current $ORIGIN is used. NOTE: The behaviour when <origin> is specified differs from that described in RFC 1035.

The origin and current domain revert to the values they were prior to the $INCLUDE once the file has been read.

$TTL

Syntax: $TTL <default-ttl> [<comment>]

Set the default Time To Live (TTL) for subsequent records with undefined TTL's. Valid TTL's are of the range 0-2147483647.

$TTL is defined in RFC 2308.

BIND Master File Extentions

$GENERATE

Syntax: $GENERATE <range> <lhs> <type> <rhs> [<comment>]

$GENERATE is used to create a series of resource records that only differ from each other by an iterator. $GENERATE can be used to easily generate the sets of records required to support sub /24 reverse delegations described in RFC 2317: Classless IN-ADDR.ARPA delegation.

$ORIGIN 0.0.192.IN-ADDR.ARPA.

$GENERATE 1-2 0 NS SERVER$.EXAMPLE.

$GENERATE 1-127 $ CNAME $.0

is equivalent to

0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.

0.0.0.192.IN-ADDR.ARPA NS SERVER2.EXAMPLE.

1.0.0.192.IN-ADDR.ARPA CNAME 1.0.0.0.192.IN-ADDR.ARPA.

2.0.0.192.IN-ADDR.ARPA CNAME 2.0.0.0.192.IN-ADDR.ARPA.

...

127.0.0.192.IN-ADDR.ARPA CNAME 127.0.0.0.192.IN-ADDR.ARPA.

range

This can be one of two forms: start-stop or start-stop/step. If the first form is used then step is set to 1. All of start, stop and step must be positive.

lhs

Lhs describes the owner name of the resource records to be created. Any single $ symbols within the LHS side are replaced by the iterator value. To get a $ in the output use \$. If the lhs is not absolute the current $ORIGIN is appended to the name, when appropriate. You can also apply an offset to the iterator by using ${offset} where offset is a decimal value to add to the iterator. And you can also change the format of the iterator by using a printf like string. The format is ${offset,width,radix} where offset is as before (use 0 for no change), width is the minimum field width (always zero padded) radix is one of d, o, x, or X to change the radix to decimal, octal, hex, or hex with capital letters. The default is ${0,1,d}. For example: ${16,3} will add 16 to the iterator and be replaced by a 3 digit decimal representation. ${0,2,x} will be replaced by a 2 digit hex representation. To get a { character inserted into the text immediately after the iterator, use $\{.

type

At present the only supported types are A, AAAA, PTR, CNAME and NS.

rhs

Rhs is the data. It is processed similarly to the lhs.

Resource Records

Syntax: {<domain>|@|<blank>} [<ttl>] [<class>] <type> <rdata> [<comment>]

All resource records have the same basic syntax.

domain

Specify the domain name for this record. If it is not absolute the current $ORIGIN is appended.

@

Use the current $ORIGIN for the domain name for this record.

blank

Use the last specified domainname.

ttl

This specifies how long this record will be cached by caching servers. The valid range is 0-2147483647.

class

Specify the class of this record. This is usually redundent as the class of a zone is specfied in the configuration file prior to reading the zone file.

type

Specify the type of this record. This describes the contents of the rdata section.

rdata

This is the value of the resource record.

Time Values: Alternate Specification format (BIND Enhancement)

Many time values within the MASTER file may be specified in multiples of weeks, days, hours, minutes and seconds rather than just seconds.

The format for this is #w#d#h#m#s. To specify 1 week you would use 1w or two weeks and 1 hour 2w1h.

This format applies to TTL values, and SOA REFRESH, RETRY, EXPIRE and MINIMUM values.

The Configuration File

Statements

A BIND 8 configuration consists of statements and comments. Statements end with a semicolon. Many statements contain a block of substatements, which are also terminated with a semicolon.

The following statements are supported:

acl

defines a named IP address matching list, for access control and other uses

include

includes a file

key

specifies key information for use in authentication and authorization

logging

specifies what the server logs, and where the log messages are sent

options

controls global server configuration options and sets defaults for other statements

controls

declares control channels to be used by the ndc utility

server

sets certain configuration options on a per-server basis

trusted-keys

defines DNSSEC keys that are preconfigured into the server and implicitly trusted

zone

defines a zone

The logging and options statements may only occur once per configuration.

Comments

The BIND 8 comment syntax allows for comments to appear anywhere that whitespace may appear in a BIND configuration file. To appeal to programmers of all kinds, they can be written in C, C++, or shell/perl constructs.

Converting from BIND 4.9.x

BIND 4.9.x configuration files can be converted to the new format by using src/bin/named/named-bootconf, a shell script that is part of the BIND 8.2.x source kits.

Syntax

acl name {

 address_match_list
};

Definition and Usage

The acl statement creates a named address match list. It gets its name from a primary use of address match lists: Access Control Lists (ACLs).

Note that an address match list's name must be defined with acl before it can be used elsewhere; no forward references are allowed.

The following ACLs are built-in:

any

Allows all hosts.

none

Denies all hosts.

localhost

Allows the IP addresses of all interfaces on the system.

localnets

Allows any host on a network for which the system has an interface.

--include Statement

Syntax

include path_name;

Definition and Usage

The include statement inserts the specified file at the point that the include statement is encountered. It cannot be used within another statement, though, so a line such as

acl internal_hosts { include "internal_hosts.acl"; };

is not allowed.

Use include to break the configuration up into easily-managed chunks. For example:

include "/etc/security/keys.bind";

include "/etc/acls.bind";

could be used at the top of a BIND configuration file in order to include any ACL or key information.

Be careful not to type "#include", like you would in a C program, because "#" is used to start a comment.

--key Statement

Syntax

key key_id {

 algorithm algorithm_id;

 secret secret_string;

};

Definition and Usage

The key statement defines a key ID which can be used in a server statement to associate an authentication method with a particular name server.

A key ID must be created with the key statement before it can be used in a server definition or an address match list.

The algorithm_id is a string that specifies a security/authentication algorithm. The only supported algorithm is "hmac-md5".

secret_string is the secret to be used by the algorithm, and is treated as a base-64 encoded string. This may be generated using dnskeygen or another utility or created manually.

The key statement is intended for use in transaction security. Unless included in a server statement, it is not used to sign any requests. It is used to verify requests matching the key_id and algorithm_id, and sign replies to those requests.

 logging Statement

Syntax

logging {

 [channel channel_name {

 (file path_name
 [versions (number | unlimited)]

 [size size_spec]

 | syslog (kern | user | mail | daemon | auth | syslog | lpr |

 news | uucp | cron | authpriv | ftp |

 local0 | local1 | local2 | local3 |

 local4 | local5 | local6 | local7)

 | null);

 [severity (critical | error | warning | notice |

 info | debug [level] | dynamic);]

 [print-category yes_or_no;]

 [print-severity yes_or_no;]

 [print-time yes_or_no;]

 };]

 [category category_name {

 channel_name; [channel_name; ...]

 };]

 ...

};

Definition and Usage

The logging statement configures a wide variety of logging options for the nameserver. Its channel phrase associates output methods, format options and severity levels with a name that can then be used with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there are multiple logging statements in a configuration, the first defined determines the logging, and warnings are issued for the others. If there is no logging statement, the logging configuration will be:

 logging {

 category default { default_syslog; default_debug; };

 category panic { default_syslog; default_stderr; };

 category packet { default_debug; };

 category eventlib { default_debug; };

 };

The logging configuration is established as soon as the logging statement is parsed. If you want to redirect messages about processing of the entire configuration file, the loggingstatement must appear first. Even if you do not redirect configuration file parsing messages, we recommend always putting the logging statement first so that this rule need not be consciously recalled if you ever do need want the parser's messages relocated.

The channel phrase

All log output goes to one or more "channels"; you can make as many of them as you want.

Every channel definition must include a clause that says whether messages selected for the channel go to a file, to a particular syslog facility, or are discarded. It can optionally also limit the message severity level that will be accepted by the channel (default is "info"), and whether to include a named-generated time stamp, the category name and/or severity level (default is not to include any).

The word null as the destination option for the channel will cause all messages sent to it to be discarded; other options for the channel are meaningless.

The file clause can include limitations both on how large the file is allowed to become, and how many versions of the file will be saved each time the file is opened.

The size option for files is simply a hard ceiling on log growth. If the file ever exceeds the size, named will just not write anything more to it until the file is reopened; exceeding the size does not automatically trigger a reopen. The default behavior is to not limit the size of the file.

If you use the version logfile option, named will retain that many backup versions of the file by renaming them when opening. For example, if you choose to keep 3 old versions of the file "lamers.log" then just before it is opened lamers.log.1 is renamed to lames.log.2, lamers.log.0 is renamed to lamers.log.1, and lamers.log is renamed to lamers.log.0. No rolled versions are kept by default; any existing log file is simply appended. The unlimited keyword is synonymous with 99 in current BIND releases.

Example usage of the size and versions options:

 channel an_example_level {

 file "lamers.log" versions 3 size 20m;

 print-time yes;

 print-category yes;

 };

The argument for the syslog clause is a syslog facility as described in the syslog manual page. How syslogd will handle messages sent to this facility is described in the syslog.conf manual page. If you have a system which uses a very old version of syslog that only uses two arguments to the openlog() function, this clause is silently ignored.

The severity clause works like syslog's "priorities", except that they can also be used if you are writing straight to a file rather than using syslog. Messages which are not at least of the severity level given will not be selected for the channel; messages of higher severity levels will be accepted.

If you are using syslog, the syslog.conf priorities will also determine what eventually passes through. For example, defining a channel facility and severity as daemon and debug but only logging daemon.warning via syslog.conf will cause messages of severity info and notice to be dropped. If the situation were reversed, with named writing messages of only warning or higher, syslogd would print all messages it received from the channel.

The server can supply extensive debugging information when it is in debugging mode. If the server's global debug level is greater than zero, debugging mode will be active. The global debug level is set either by starting the named server with the "-d" flag followed by a positive integer, or by sending the running server the SIGUSR1 signal (for example, by using "ndc trace"). The global debug level can be set to zero, and debugging mode turned off, by sending the server the SIGUSR2 signal ("ndc notrace"). All debugging messages in the server have a debug level, and higher debug levels give more more detailed output. Channels that specify a specific debug severity, e.g.

 channel specific_debug_level {

 file "foo";

 severity debug 3;

 };

will get debugging output of level 3 or less any time the server is in debugging mode, regardless of the global debugging level. Channels with dynamic severity use the server's global level to determine what messages to print.

If print-time has been turned on, the date and time will be logged. print-time may be specified for a syslog channel, but is usually pointless since syslog also prints the date and time. If print-category is requested, then the category of the message will be logged as well. Finally, if print-severity is on, the severity level of the message will be logged. The print- options may be used in any combination, and will always be printed in the following order: time, category, severity. Here is an example where all three print- options are on:

 28-Apr-1997 15:05:32.863 default: notice: Ready to answer queries.

There are four predefined channels that are used for named's default logging as follows. How they are used used is described in the next section, The category phrase.

 channel default_syslog {

 syslog daemon; # send to syslog's daemon facility

 severity info; # only send priority info and higher

 };

 channel default_debug {

 file "named.run"; # write to named.run in the working directory

 # Note: stderr is used instead of "named.run"

 # if the server is started with the "-f" option.

 severity dynamic; # log at the server's current debug level

 };

 channel default_stderr { # writes to stderr

 file "<stderr>"; # this is illustrative only; there's currently

 # no way of specifying an internal file

 # descriptor in the configuration language.

 severity info; # only send priority info and higher

 };

 channel null {

 null; # toss anything sent to this channel

 };

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly, but you can modify the default logging by pointing categories at channels you have defined.

The category phrase

There are many categories, so you can send the logs you want to see wherever you want, without seeing logs you don't want. If you don't specify a list of channels for a category, log messages in that category will be sent to the default category instead. If you don't specify a default category, the following "default default" is used:

 category default { default_syslog; default_debug; };

As an example, let's say you want to log security events to a file, but you also want keep the default logging behavior. You'd specify the following:

 channel my_security_channel {

 file "my_security_file";

 severity info;

 };

 category security { my_security_channel; default_syslog; default_debug; };

To discard all messages in a category, specify the null channel:

 category lame-servers { null; };

 category cname { null; };

The following categories are available:

default

The catch-all. Many things still aren't classified into categories, and they all end up here. Also, if you don't specify any channels for a category, the default category is used instead. If you do not define the default category, the following definition is used: category default { default_syslog; default_debug; };

config

High-level configuration file processing.

parser

Low-level configuration file processing.

queries

A short log message is generated for every query the server receives.

lame-servers

Messages like "Lame server on ..."

statistics

Statistics.

panic

If the server has to shut itself down due to an internal problem, it will log the problem in this category as well as in the problem's native category. If you do not define the panic category, the following definition is used: category panic { default_syslog; default_stderr; };

update

Dynamic updates.

ncache

Negative caching.

xfer-in

Zone transfers the server is receiving.

xfer-out

Zone transfers the server is sending.

db

All database operations.

eventlib

Debugging info from the event system. Only one channel may be specified for this category, and it must be a file channel. If you do not define the eventlib category, the following definition is used: category eventlib { default_debug; };

packet

Dumps of packets received and sent. Only one channel may be specified for this category, and it must be a file channel. If you do not define the packet category, the following definition is used: category packet { default_debug; };

notify

The NOTIFY protocol.

cname

Messages like "... points to a CNAME".

security

Approved/unapproved requests.

os

Operating system problems.

insist

Internal consistency check failures.

maintenance

Periodic maintenance events.

load

Zone loading messages.

response-checks

Messages arising from response checking, such as "Malformed response ...", "wrong ans. name ...", "unrelated additional info ...", "invalid RR type ...", and "bad referral ...".

 options Statement

Syntax

options {

 [version version_string;]

 [directory path_name;]

 [named-xfer path_name;]

 [dump-file path_name;]

 [memstatistics-file path_name;]

 [pid-file path_name;]

 [statistics-file path_name;]

 [auth-nxdomain yes_or_no;]

 [deallocate-on-exit yes_or_no;]

 [dialup yes_or_no;]

 [fake-iquery yes_or_no;]

 [fetch-glue yes_or_no;]

 [has-old-clients yes_or_no;]

 [host-statistics yes_or_no;]

 [host-statistics-max number;]

 [multiple-cnames yes_or_no;]

 [notify yes_or_no;]

 [recursion yes_or_no;]

 [rfc2308-type1 yes_or_no;]

 [use-id-pool yes_or_no;]

 [treat-cr-as-space yes_or_no;]

 [also-notify { ip_addr; [ip_addr; ...] };]

 [forward (only | first);]

 [forwarders { [in_addr ; [in_addr ; ...]] };]

 [check-names (master | slave | response) (warn | fail | ignore);]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [allow-recursion { address_match_list };]

 [blackhole { address_match_list };]

 [listen-on [port ip_port] { address_match_list };]

 [query-source [address (ip_addr | *)] [port (ip_port | *)] ;]

 [lame-ttl number;]

 [max-transfer-time-in number;]

 [max-ncache-ttl number;]

 [min-roots number;]

 [serial-queries number;]

 [transfer-format (one-answer | many-answers);]

 [transfers-in number;]

 [transfers-out number;]

 [transfers-per-ns number;]

 [transfer-source ip_addr;]

 [maintain-ixfr-base yes_or_no;]

 [max-ixfr-log-size number;]

 [coresize size_spec ;]

 [datasize size_spec ;]

 [files size_spec ;]

 [stacksize size_spec ;]

 [cleaning-interval number;]

 [heartbeat-interval number;]

 [interface-interval number;]

 [statistics-interval number;]

 [topology { address_match_list };]

 [sortlist { address_match_list };]

 [rrset-order { order_spec ; [order_spec ; ...] };]

};

Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear at only once in a configuration file; if more than one occurrence is found, the first occurrence determines the actual options used, and a warning will be generated. If there is no options statement, an options block with each option set to its default will be used.

Pathnames

version

The version the server should report via the ndc command or via a query of name version.bind in class chaos. The default is the real version number of the server, but some server operators prefer the string "surely you must be joking".

directory

The working directory of the server. Any non-absolute pathnames in the configuration file will be taken as relative to this directory. The default location for most server output files (e.g. "named.run") is this directory. If a directory is not specified, the working directory defaults to ".", the directory from which the server was started. The directory specified should be an absolute path.

named-xfer

The pathname to the named-xfer program that the server uses for inbound zone transfers. If not specified, the default is system dependent (e.g. "/usr/sbin/named-xfer").

dump-file

The pathname of the file the server dumps the database to when it receives SIGINT signal (ndc dumpdb). If not specified, the default is "named_dump.db".

memstatistics-file

The pathname of the file the server writes memory usage statistics to, on exit, if deallocate-on-exit is yes. If not specified, the default is "named.memstats".

pid-file

The pathname of the file the server writes its process ID in. If not specified, the default is operating system dependent, but is usually "/var/run/named.pid" or "/etc/named.pid". The pid-file is used by programs like "ndc" that want to send signals to the running nameserver.

statistics-file

The pathname of the file the server appends statistics to when it receives SIGILL signal (ndc stats). If not specified, the default is "named.stats".

Boolean Options

auth-nxdomain

If yes, the AA bit is always set on NXDOMAIN responses, even if the server is not actually authoritative. The default is yes. Do not turn off auth-nxdomain unless you are sure you know what you are doing, as some older software won't like it.

deallocate-on-exit

If yes, the server will painstakingly deallocate every object it it allocated, when it exits, and then write a memory usage report to the memstatistics-file. The default is no, because it is faster to let the operating system clean up. deallocate-on-exit is handy for detecting memory leaks.

dialup

If yes, the server treats all zones as if they are doing zone transfers across a dial on demand dialup link, which can be brought up by traffic originating from this server. This has different effects according to zone type and concentrates the zone maintenance so that it all happens in a short interval, once every heartbeat-interval and hopefully during the one call. It also suppresses some of the normal zone maintainance traffic. The default is no. The dialup option may also be specified in the zone statement, in which case it overrides the options dialup statement.

If the zone is a master zone, the server will send out NOTIFY request to all the slaves. This will trigger the "zone up to date checking" in the slave (providing it supports NOTIFY), allowing the slave to verify the zone while the call us up.

If the zone is a slave or stub zone, the server will suppress the regular "zone up to date" queries and only perform them when the heartbeat-interval expires.

fake-iquery

If yes, the server will simulate the obsolete DNS query type IQUERY. The default is no.

fetch-glue

If yes (the default), the server will fetch "glue" resource records it doesn't have when constructing the additional data section of a response. fetch-glue no can be used in conjunction with recursion no to prevent the server's cache from growing or becoming corrupted (at the cost of requiring more work from the client).

has-old-clients

Setting the option to yes is equivalent to setting the following options: auth-nxdomain yes; and rfc2308-type1 no;. The use of has-old-clients with auth-nxdomain and rfc2308-type1 is order dependent.

host-statistics

If yes, statistics are kept for every host that the the nameserver interacts with. The default is no. Note: turning on host-statistics can consume huge amounts of memory.

host-statistics-max

The maximum number of host records that will be kept. When this limit is reached no new hosts will be added to the host statistics. If the set to zero then there is no limit set. The default value is zero.

maintain-ixfr-base

If yes, a transaction log is kept for Incremental Zone Transfer. The default is no.

multiple-cnames

If yes, multiple CNAME resource records will be allowed for a domain name. The default is no. Allowing multiple CNAME records is against standards and is not recommended. Multiple CNAME support is available because previous versions of BIND allowed multiple CNAME records, and these records have been used for load balancing by a number of sites.

notify

If yes (the default), DNS NOTIFY messages are sent when a zone the server is authoritative for changes. The use of NOTIFY speeds convergence between the master and its slaves. Slave servers that receive a NOTIFY message, and understand it, will contact the master server for the zone to see if they need to do a zone transfer. If they do, they will initiate it immediately. The notify option may also be specified in the zone statement, in which case it overrides the options notify statement.

recursion

If yes, and a DNS query requests recursion, the server will attempt to do all the work required to answer the query. If recursion is not on, the server will return a referral to the client if it doesn't know the answer. The default is yes. See also fetch-glue above.

rfc2308-type1

If yes, the server will send NS records along with the SOA record for negative answers from the cache. You need to set this to no if you have an old BIND server using you as a forwarder that does not understand negative answers which contain both SOA and NS records or you have an old version of sendmail. The correct fix is to upgrade the broken server or sendmail. The default is no.

use-id-pool

If yes, the server will keep track of its own outstanding query ID's to avoid duplication and increase randomness. This will result in 128KB more memory being consumed by the server. The default is no.

treat-cr-as-space

If yes, the server will treat '\r' characters the same way it treats a ' ' or '\t'. This may be necessary when loading zone files on a UNIX system that were generated on an NT or DOS machine. The default is no.

Also-Notify

also-notify

Defines a global list of IP addresses that also get sent NOTIFY messages whenever a fresh copy of the zone is loaded. This helps to ensure that copies of the zones will quickly converge on ``stealth'' servers. If an also-notify list is given in a zone statement, it will override the options also-notify statement. When a zone notify statement is set to no, the IP addresses in the global also-notify list will not get sent NOTIFY messages for that zone. The default is the empty list (no global notification list).

Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic over links to external nameservers. It can also be used to allow queries by servers that do not have direct access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on those queries for which the server is not authoritative and does not have the answer in its cache.

forward

This option is only meaningful if the forwarders list is not empty. A value of first, the default, causes the server to query the forwarders first, and if that doesn't answer the question the server will then look for the answer itself. If only is specified, the server will only query the forwarders.

forwarders

Specifies the IP addresses to be used for forwarding. The default is the empty list (no forwarding).

Forwarding can also be configured on a per-zone basis, allowing for the global forwarding options to be overridden in a variety of ways. You can set particular zones to use different forwarders, or have different forward only/first behavior, or to not forward at all. See the zone statement for more information.

Future versions of BIND 8 will provide a more powerful forwarding system. The syntax described above will continue to be supported.

Name Checking

The server can check domain names based upon their expected client contexts. For example, a domain name used as a hostname can be checked for compliance with the RFCs defining valid hostnames.

Three checking methods are available:

ignore

No checking is done.

warn

Names are checked against their expected client contexts. Invalid names are logged, but processing continues normally.

fail

Names are checked against their expected client contexts. Invalid names are logged, and the offending data is rejected.

The server can check names three areas: master zone files, slave zone files, and in responses to queries the server has initiated. If check-names response fail has been specified, and answering the client's question would require sending an invalid name to the client, the server will send a REFUSED response code to the client.

The defaults are:

 check-names master fail;

 check-names slave warn;

 check-names response ignore;

check-names may also be specified in the zone statement, in which case it overrides the options check-names statement. When used in a zone statement, the area is not specified (because it can be deduced from the zone type).

Access Control

Access to the server can be restricted based on the IP address of the requesting system. See address_match_list for details on how to specify IP address lists.

allow-query

Specifies which hosts are allowed to ask ordinary questions. allow-query may also be specified in the zone statement, in which case it overrides the options allow-query statement. If not specified, the default is to allow queries from all hosts.

allow-transfer

Specifies which hosts are allowed to receive zone transfers from the server. allow-transfer may also be specified in the zone statement, in which case it overrides the options allow-transfer statement. If not specified, the default is to allow transfers from all hosts.

allow-recursion

Specifies which hosts are allowed to make recursive queries through this server. If not specified, the default is to allow recursive queries from all hosts.

blackhole

Specifies a list of addresses that the server will not accept queries from or use to resolve a query. Queries from these addresses will not be responded to.

Interfaces

The interfaces and ports that the server will answer queries from may be specified using the listen-on option. listen-on takes an optional port, and an address_match_list. The server will listen on all interfaces allowed by the address match list. If a port is not specified, port 53 will be used.

Multiple listen-on statements are allowed. For example,

 listen-on { 5.6.7.8; };

 listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the nameserver on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all interfaces.

Query Address

If the server doesn't know the answer to a question, it will query other nameservers. query-source specifies the address and port used for such queries. If address is * or is omitted, a wildcard IP address (INADDR_ANY) will be used. If port is * or is omitted, a random unprivileged port will be used. The default is

 query-source address * port *;

Note: query-source port applies only to UDP queries, TCP queries always use a random unprivileged port.

Zone Transfers

max-transfer-time-in

Inbound zone transfers (named-xfer processes) running longer than this many minutes will be terminated. The default is 120 minutes (2 hours).

transfer-format

The server supports two zone transfer methods. one-answer uses one DNS message per resource record transferred. many-answers packs as many resource records as possible into a message. many-answers is more efficient, but is only known to be understood by BIND 8.1+ and patched versions of BIND 4.9.5. The default is one-answer. transfer-format may be overridden on a per-server basis by using the server statement.

transfers-in

The maximum number of inbound zone transfers that can be running concurrently. The default value is 10. Increasing transfers-in may speed up the convergence of slave zones, but it also may increase the load on the local system.

transfers-out

This option will be used in the future to limit the number of concurrent outbound zone transfers. It is checked for syntax, but is otherwise ignored.

transfers-per-ns

The maximum number of inbound zone transfers (named-xfer processes) that can be concurrently transferring from a given remote nameserver. The default value is 2. Increasing transfers-per-ns may speed up the convergence of slave zones, but it also may increase the load on the remote nameserver. transfers-per-ns may be overridden on a per-server basis by using the transfers phrase of the server statement.

transfer-source

transfer-source determines which local address will be bound to the TCP connection used to fetch all zones transferred inbound by the server. If not set, it defaults to a system controlled value which will usually be the address of the interface ``closest to'' the remote end. This address must appear in the remote end's allow-transfer option for the zone being transferred, if one is specified. This statement sets the transfer-source for all zones, but can be overridden on a per-zone basis by including a transfer-source statement within the zone block in the configuration file.

serial-queries

Slave servers will periodically query master servers to find out if zone serial numbers have changed. Each such query uses a minute amount of the slave server's network bandwidth, but more importantly each query uses a small amount of memory in the slave server while waiting for the master server to respond. The serial-queries option sets the maximum number of concurrent serial-number queries allowed to be outstanding at any given time. The default is four (4). Note: If a server loads a large (tens or hundreds of thousands) number of slave zones, this limit should be raised to the high hundreds or low thousands -- otherwise the slave server may never actually become aware of zone changes in the master servers. Beware, though, that setting this limit arbitrarily high can spend a considerable amount of your slave server's network, CPU, and memory resources. As with all tunable limits, this one should be changed gently and monitored for its effects.

Resource Limits

The server's usage of many system resources can be limited. Some operating systems don't support some of the limits. On such systems, a warning will be issued if the unsupported limit is used. Some operating systems don't support limiting resources, and on these systems a cannot set resource limits on this system message will be logged.

Scaled values are allowed when specifying resource limits. For example, 1G can be used instead of 1073741824 to specify a limit of one gigabyte. unlimited requests unlimited use, or the maximum available amount. default uses the limit that was in force when the server was started. See size_spec for more details.

coresize

The maximum size of a core dump. The default is default.

datasize

The maximum amount of data memory the server may use. The default is default.

files

The maximum number of files the server may have open concurrently. The default is unlimited. Note: on some operating systems the server cannot set an unlimited value and cannot determine the maximum number of open files the kernel can support. On such systems, choosing unlimited will cause the server to use the larger of the rlim_max for RLIMIT_NOFILE and the value returned by sysconf(_SC_OPEN_MAX). If the actual kernel limit is larger than this value, use limit files to specify the limit explicitly.

max-ixfr-log-size

The max-ixfr-log-size will be used in a future release of the server to limit the size of the transaction log kept for Incremental Zone Transfer.

stacksize

The maximum amount of stack memory the server may use. The default is default.

Periodic Task Intervals

cleaning-interval

The server will remove expired resource records from the cache every cleaning-interval minutes. The default is 60 minutes. If set to 0, no periodic cleaning will occur.

heartbeat-interval

The server will perform zone maintenance tasks for all zones marked dialup yes whenever this interval expires. The default is 60 minutes. Reasonable values are up to 1 day (1440 minutes). If set to 0, no zone maintenance for these zones will occur.

interface-interval

The server will scan the network interface list every interface-interval minutes. The default is 60 minutes. If set to 0, interface scanning will only occur when the configuration file is loaded. After the scan, listeners will be started on any new interfaces (provided they are allowed by the listen-on configuration). Listeners on interfaces that have gone away will be cleaned up.

statistics-interval

Nameserver statistics will be logged every statistics-interval minutes. The default is 60. If set to 0, no statistics will be logged.

Topology

All other things being equal, when the server chooses a nameserver to query from a list of nameservers, it prefers the one that is topologically closest to itself. The topology statement takes an address_match_list and interprets it in a special way. Each top-level list element is assigned a distance. Non-negated elements get a distance based on their position in the list, where the closer the match is to the start of the list, the shorter the distance is between it and the server. A negated match will be assigned the maximum distance from the server. If there is no match, the address will get a distance which is further than any non-negated list element, and closer than any negated element. For example,

 topology {

 10/8;

 !1.2.3/24;

 { 1.2/16; 3/8; };

 };

will prefer servers on network 10 the most, followed by hosts on network 1.2.0.0 (netmask 255.255.0.0) and network 3, with the exception of hosts on network 1.2.3 (netmask 255.255.255.0), which is preferred least of all.

The default topology is

 topology { localhost; localnets; };

Resource Record sorting

When returning multiple RRs, the nameserver will normally return them in Round Robin, i.e. after each request, the first RR is put to the end of the list. As the order of RRs is not defined, this should not cause any problems.

The client resolver code should re-arrange the RRs as appropriate, i.e. using any addresses on the local net in preference to other addresses. However, not all resolvers can do this, or are not correctly configured.

When a client is using a local server, the sorting can be performed in the server, based on the client's address. This only requires configuring the nameservers, not all the clients.

The sortlist statement takes an address match list and interprets it even more specially than the topology statement does.

Each top level statement in the sortlist must itself be an explicit address match list with one or two elements. The first element (which may be an IP address, an IP prefix, an ACL name or nested address match list) of each top level list is checked against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement contains only one element, the actual primitive element that matched the source address is used to select the address in the response to move to the beginning of the response. If the statement is a list of two elements, the second element is treated like the address match list in a topology statement. Each top level element is assigned a distance and the address in the response with the minimum distance is moved to the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself will get responses preferring addresses on any of the locally connected networks. Next most preferred are addresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3/24 network with no preference shown between these two networks. Queries received from a host on the 192.168.1/24 network will prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks. Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network will only prefer other addresses on their directly connected networks.

sortlist {

 { localhost; // IF the local host

 { localnets; // THEN first fit on the

 192.168.1/24; // following nets

 { 192,168.2/24; 192.168.3/24; }; }; };

 { 192.168.1/24; // IF on class C 192.168.1

 { 192.168.1/24; // THEN use .1, or .2 or .3

 { 192.168.2/24; 192.168.3/24; }; }; };

 { 192.168.2/24; // IF on class C 192.168.2

 { 192.168.2/24; // THEN use .2, or .1 or .3

 { 192.168.1/24; 192.168.3/24; }; }; };

 { 192.168.3/24; // IF on class C 192.168.3

 { 192.168.3/24; // THEN use .3, or .1 or .2

 { 192.168.1/24; 192.168.2/24; }; }; };

 { { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net

 };

};

The following example will give reasonable behaviour for the local host and hosts on directly connected networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses sent to queries from the local host will favor any of the directly connected networks. Responses sent to queries from any other hosts on a directly connected network will prefer addresses on that same network. Responses to other queries will not be sorted.

sortlist {

 { localhost; localnets; };

 { localnets; };

};

RRset Ordering

When multiple records are returned in an answer it may be useful to configure the order the records are placed into the response. For example the records for a zone might be configured to always be returned in the order they are defined in the zone file. Or perhaps a random shuffle of the records as they are returned is wanted. The rrset-order statement permits configuration of the ordering made of the records in a multiple record response. The default, if no ordering is defined, is a cyclic ordering (round robin).

An order_spec is defined as follows:

 [class class_name][type type_name][name "FQDN"] order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name is specified, the default is "*".

The legal values for ordering are:

fixed

Records are returned in the order they are defined in the zone file.

random

Records are returned in some random order.

cyclic

Records are returned in a round-robin order.

For example:

 rrset-order {

class IN type A name "rc.vix.com" order random;

 order cyclic;

 };

will cause any responses for type A records in class IN that have "rc.vix.com" as a suffix, to always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined--the last one applies.

If no rrset-order statement is specified, a default one of:

 rrset-order { class ANY type ANY name "*" order cyclic ; };

is used.

Tuning

lame-ttl

Sets the number of seconds to cache a lame server indication. 0 disables caching. Default is 600 (10 minutes). Maximum value is 1800 (30 minutes).

max-ncache-ttl

To reduce network traffic and increase performance the server stores negative answers. max-ncache-ttl is used to set a maximum retention time for these answers in the server is seconds. The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot exceed the maximum retention time for ordinary (positive) answers (7 days) and will be silently truncated to 7 days if set to a value which is greater that 7 days.

min-roots

The minimum number of root servers that is required for a request for the root servers to be accepted. Default 2.

--controls Statement

Syntax

controls {

 [inet ip_addr
 port ip_port
 allow { address_match_list; };]

 [unix path_name
 perm number
 owner number
 group number;]

};

Definition and Usage

The controls statement declares control channels to be used by system administrators to affect the operation of the local name server. These control channels are used by the ndc utility to send commands to and retrieve non-DNS results from a name server.

A unix control channel is a FIFO in the file system, and access to it is controlled by normal file system permissions. It is created by named with the specified file mode bits (see the chmod(1) manual page), user and group owner. Note that, unlike chmod, the mode bits specified for perm will normally have a leading 0 so the number is interpreted as octal. Also note that the user and group ownership specified as owner and group must be given as numbers, not names. It is recommended that the permissions be restricted to administrative personnel only, or else any user on the system might be able to manage the local name server.

On Solaris and SunOS machines the permissions and ownerships are applied to the containing directory. This is done because these operating systems do not honour the permission on the UNIX domain socket.

An inet control channel is a TCP/IP socket accessible to the Internet, created at the specified ip_port on the specified ip_addr. Modern telnet clients are capable of speaking directly to these sockets, and the control protocol is ARPAnet-style text. It is recommended that 127.0.0.1 be the only ip_addr used, and this only if you trust all non-privileged users on the local host to manage your name server.

--server Statement

Syntax

server ip_addr {

 [bogus yes_or_no;]

 [support-ixfr yes_or_no;]

 [transfers number;]

 [transfer-format (one-answer | many-answers);]

 [keys { key_id [key_id ...] };]

};

Definition and Usage

The server statement defines the characteristics to be associated with a remote name server.

If you discover that a server is giving out bad data, marking it as bogus will prevent further queries to it. The default value of bogus is no. Marking a server as bogus will mark all other addresses for that server as bogus when a match is made when looking up a server's address by name.

The server supports two zone transfer methods. The first, one-answer, uses one DNS message per resource record transferred. many-answers packs as many resource records as possible into a message. many-answers is more efficient, but is only known to be understood by BIND 8.1 and patched versions of BIND 4.9.5. You can specify which method to use for a server with the transfer-format option. If transfer-format is not specified, the transfer-format specified by the options statement will be used.

The transfers will be used in a future release of the server to limit the number of concurrent in-bound zone transfers from the specified server. It is checked for syntax but is otherwise ignored.

The keys clause is used to identify a key_id defined by the key statement, to be used for transaction security when talking to the remote server. The key statememnt must come before the server statement that references it. When a request is sent to the remote server, a request signature will be generated using the key specified here and appended to the message. A request originating from the remote server is not required to be signed by this key.

--zone Statement

Syntax

zone domain_name [(in | hs | hesiod | chaos)] {

 type master;

 file path_name;

 [forward (only | first);]

 [forwarders { [ip_addr ; [ip_addr ; ...]] };]

 [check-names (warn | fail | ignore);]

 [allow-update { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [dialup yes_or_no;]

 [notify yes_or_no;]

 [also-notify { ip_addr; [ip_addr; ...] };]

 [ixfr-base path_name;]

 [pubkey number number number string;]

};

zone domain_name [(in | hs | hesiod | chaos)] {

 type (slave | stub);

 [file path_name;]

 [ixfr-base path_name;]

 masters [port ip_port] { ip_addr; [ip_addr; ...] };

 [forward (only | first);]

 [forwarders { [ip_addr ; [ip_addr ; ...]] };]

 [check-names (warn | fail | ignore);]

 [allow-update { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [transfer-source ip_addr;]

 [dialup yes_or_no;]

 [max-transfer-time-in number;]

 [notify yes_or_no;]

 [also-notify { ip_addr; [ip_addr; ...] };]

 [pubkey number number number string;]

};

zone domain_name [(in | hs | hesiod | chaos)] {

 type forward;

 [forward (only | first);]

 [forwarders { [ip_addr ; [ip_addr ; ...]] };]

 [check-names (warn | fail | ignore);]

};

zone "." [(in | hs | hesiod | chaos)] {

 type hint;

 file path_name;

 [check-names (warn | fail | ignore);]

};

Definition and Usage

Zone Types

master

The server has a master copy of the data for the zone and will be able to provide authoritative answers for it.

slave

A slave zone is a replica of a master zone. The masters list specifies one or more IP addresses that the slave contacts to update its copy of the zone. If a port is specified then checks to see if the zone is current and zone transfers will be done to the port given. If file is specified, the replica will be written to this file whenever the zone is changed, and reloaded from this file on a server restart. Use of file is recommended, since it often speeds server startup and eliminates a needless waste of bandwidth. Note that for large numbers (in the tens or hundreds of thousands) of zones per server, it is best to use a two level naming scheme for zone file names. For example, a slave server for the zone vix.com might place the zone contents into a file called "vi/vix.com" where vi/ is just the first two letters of the zone name. (Most operating systems behave very slowly if you put 100K files into a single directory.)

stub

A stub zone is like a slave zone, except that it replicates only the NS records of a master zone instead of the entire zone.

forward

A forward zone is used to direct all queries in it to other servers. The specification of options in such a zone will override any global options declared in the options statement.

If either no forwarders statement is present in the zone or an empty list for forwarders is given, no forwarding will be done for the zone, cancelling the effects of any forwarders in the options statement. Thus if you want to use this type of zone to change the behavior of the global forward option, and not the servers used, you also need to respecify the global forwarders.

hint

The initial set of root nameservers is specified using a hint zone. When the server starts up, it uses the root hints to find a root nameserver and get the most recent list of root nameservers.

Note: previous releases of BIND used the term primary for a master zone, secondary for a slave zone, and cache for a hint zone.

Class

The zone's name may optionally be followed by a class. If a class is not specified, class in (for "internet"), is assumed. This is correct for the vast majority of cases.

The hesiod class is for an information service from MIT's Project Athena. It is used to share information about various systems databases, such as users, groups, printers and so on. More information can be found at MIT. The keyword hs is a synonym for hesiod.

Another MIT development was CHAOSnet, a LAN protocol created in the mid-1970s. It is still sometimes seen on LISP stations and other hardware in the AI community, and zone data for it can be specified with the chaos class.

Options

check-names

See Name Checking.

allow-query

See the description of allow-query in the Access Control section. Note that this should in general be more restrictive than the similar global option of the same name; otherwise, confusing and nonworthwhile delegations will be returned.

allow-update

Specifies which hosts are allowed to submit Dynamic DNS updates to the server. The default is to deny updates from all hosts.

allow-transfer

See the description of allow-transfer in the Access Control section.

transfer-source

transfer-source determines which local address will be bound to the TCP connection used to fetch this zone. If not set, it defaults to a system controlled value which will usually be the address of the interface ``closest to'' the remote end. This address must appear in the remote end's allow-transfer option for this zone if one is specified.

ixfr-base

ixfr-base specifies the file name used for IXFR transaction log file.

max-transfer-time-in

See the description of max-transfer-time-in in the Zone Transfers section.

dialup

See the description of dialup in the Boolean Options section.

notify

See the description of notify in the Boolean Options section.

also-notify

also-notify is only meaningful if notify is active for this zone. The set of machines that will receive a DNS NOTIFY message for this zone is made up of all the listed nameservers for the zone (other than the primary master) plus any IP addresses specified with also-notify. also-notify is not meaningful for stub zones. The default is the empty list.

forward

forward is only meaningful if the zone has a forwarders list. The only value causes the lookup to fail after trying the forwarders and getting no answer, while first would allow a normal lookup to be tried.

forwarders

The forwarders option in a zone is used to override the list of global forwarders. If it is not specified in a zone of type forward, no forwarding is done for the zone; the global options are not used.

pubkey

A pubkey represents a public key for this zone. It is needed when this is the top level authoritative zone served by this server and there is no chain of trust to a trusted key. It is considered secure, so that data that it signs will be considered secure. The DNSSEC flags, protocol, and algorithm are specified, as well as a base-64 encoded string representing the key.

--Comment Syntax

Syntax

/* This is a BIND comment as in C */

// This is a BIND comment as in C++

This is a BIND comment as in common Unix shells and perl

Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because they are completely delimited with these characters, they can be used to comment only a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire comment ends with the first */:

/* This is the start of a comment.

 This is still part of the comment.

/* This is an incorrect attempt at nesting a comment. */

 This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to the end of the physical line. They cannot be continued across multiple physical lines; to have one logical comment span multiple lines, each line must use the // pair. For example:

// This is the start of a comment. The next line

// is a new comment, even though it is logically

// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (hash or pound or number or octothorpe or whatever) and continue to the end of the physical line, like C++ comments.

For example:

This is the start of a comment. The next line

is a new comment, even though it is logically

part of the previous comment.

WARNING: you cannot use the ; (semicolon) character to start a comment such as you would in a zone file. The semicolon indicates the end of a configuration statement, so whatever follows it will be interpreted as the start of the next statement.

 Example Config File

/*

 * A simple BIND 8 configuration

 */

logging {

category lame-servers { null; };

category cname { null; };

};

options {

directory "/var/named";

};

controls {

inet * port 52 allow { localnets; };

// a BAD idea

unix "/var/run/ndc" perm 0600 owner 0 group 0;
// the default

};

zone "isc.org" in {

type master;

file "master/isc.org";

};

zone "vix.com" in {

type slave;

file "slave/vix.com";

masters { 10.0.0.53; };

};

zone "." in {

type hint;

file "named.cache";

};

zone "0.0.127.in-addr.arpa" in {

type master;

notify no;

file "master/127.0.0";

};

